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On-off intermittency is investigated in a coupled-map lattice system by applying noise at a single site. The
distribution of the laminar phases for various sites is calculated numerically. The results show that at large
noise intensity the distribution of the laminar phases of the forced site obeys a nearly exponential decay law
with respect to the laminar length and this exponential decay law is gradually replaced by a power law for the
sites away from the forced site. Those sites far from the forced site obey a power law with power exponent

- % This critical law is organized by the system itself.

PACS number(s): 05.45.+b

Recently, a type of intermittency, so called on-off inter-
mittency, has been reported in some low-dimensional nonlin-
ear dynamical systems [1-5]. This intermittency is charac-
terized by a two-state nature. One is the “off” state, which is
nearly constant, and remains so for very long periods of time
and is suddenly changed by a burst, the so called “on” state,
which departs quickly from, and returns quickly to the “off”
state. Moreover, a power law characterizing the on-off inter-
mittency has been obtained and discussed by Platt and co-
workers [2—4]. However, the on-off intermittency phenom-
enon has been discussed only in low-dimensional temporal
systems. It is well known that spatiotemporal complexity is
often observed in natural systems, such as fluids, optics,
plasma, and biological systems, etc. Therefore, it is very im-
portant to characterize the features of these practical high-
dimensional systems. Since the high dimensionality of these
systems causes difficulties both in theoretical and numerical
investigations, the relatively simple coupled-map lattice
(CML) model is often taken as a convenient tool to grasp the
main characteristics of spatiotemporal systems. In this paper
we focus our attention on the study of on-off intermittency in
the one-dimensional CML model.

Among the CML systems, the simplest and most exten-
sively investigated model with symmetric couplings is the
nearest-neighbor coupled diffusive model

X (D)= (1= f Gey(D)+ 5 [fGa (= D)+ fx, i+ 1)),
M

where n,i, € are the discrete time step, the lattice site index,
and the coupling coefficient, respectively. Here we assume a
periodic boundary condition x,(i)=x,(i+L), with L being
the system size. The mapping function f(x) is chosen to be
the logistic map

fx)=ax(1-x), 2

which exhibits complicated bifurcation behavior, when the
parameter a varies from 1 to 4. The behavior is well known
to be fully developed chaos at a=4 for a single site
L=1).
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With the variation of a and € in the parameter plane, the
system (1) can exhibit rich and complicated spatiotemporal
bifurcation behaviors, such as spatiotemporal periodicity,
spatiotemporal intermittency, fully developed turbulence,
and so on [6-12]. For instance, a stable spatiotemporal
period-2 state is shown in the small frame of Fig. 1 at
a=4, €=0.15, and L =100. In the following discussion, we
focus our attention on the period-2 state at these parameter
values. Now we add a small amplitude noise at the “center”
site (L/2)+1 (note, with periodic boundary conditions, all
sites are equivalent, and the word “center”” has no physical
importance), then the model is changed to

X, () =x,())+ 0TE8; (L12)+1»

3
Xp+1(0)=(1 =€) f(x, () + 5 [f(x,(i = 1)+ f&,(i+1))],

x (1)
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FIG. 1. The time-space structure of the system at 0=0.02. The
plotting is made in 4000 iterations after the transient process. The
exact spatiotemporal period-2 state (o0=0) is plotted in the small
frame in the same manner.
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FIG. 2. The time evolutions of the forced site i=51. (a)
o=0.032. (b) 0=0.036. (c) o=0.055. In (b) the style of on-off
intermittency [from the bands (a)] is apparent. In (c) the feature
is rather different from that of (b). However, the trace of the on-off
nature can still be observed in the region far away from the bands
of (a).
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where £ is a random variable in the interval [0,1] with uni-
form distribution, o is the intensity of noise. As o is finite,
while small, the original spatiotemporal period-2 state (see
the small frame in Fig. 1) is replaced by a new high-
dimensional state, in which the sites near the forced site ran-
domly move in a small region around the period-2 state, and
the sites far away from the forced one still stay at the
period-2 state. At 0=0.02 the behavior of the system is
shown in the large frame of Fig. 1. Starting from a randomly
given initial state the figures in both large and small frames
of Fig. 1 are obtained by plotting 4000 data after the tran-
sient process. When o is smaller than the critical value
o,~0.034, the envelope of the high-dimensional state is
fixed after the transient process. Except for a few sites away
from the forced site, the distances between the envelope and
the corresponding period-2 positions decay exponentially
with the site distance from the forced site

Ar(i)=Ae Ali-L/2)-1] @

where Ar(i)=(Ar,(i),Ar,(i)) are the ith site’s maximum
deviations from the period-2 state [xy=(x;,x,)]. The decay
exponent B is independent of the values of o and L (if L is
large enough, of course), but depends on €,a, and depends
on the way in which the sites couple to each other. At the
parameters of Fig. 1 we find B~0.52. The amplitude
A=(A,,A,) depends on the noise intensity. Actually, the
exponent 3 can be calculated explicitly as follows. First, as
|i—(L/2)—1| is large, the deviations from the period-2 state
are very small, and linearization around the period-2 state is
valid. In the linear case the boundary certainly maps to the
boundary itself. Therefore, the envelope is a stationary
period-4 state of the system. Inserting Eq. (4) to the linear-
ized Eq. (1) we immediately obtain

a(l1—e€)(1—2x;)A;—[ae(1—2x,)sinhf+1]A,=0,

)
[ae(1—2x,)sinhB+1]A+a(l—€)(1—2x,;)A,=0,
leading to the condition
a(l—e)(1—2x;) —[ae(1—2x,)sinhB+1] B
[ae(1—2x,)sinhB+1] a(l1—e)(1—2x,) =0,
(6)

from which B can be analytically given. At a=4, €=0.15,
we have x;=0.458 414 and x,=0.898 729, and then get
B~0.52, which is confirmed by numerical simulations.

If we increase o continuously over a threshold
o,~0.034, the behavior of the forced site suddenly changes;
it stays at the “off” state for very long time, and suddenly
departs quickly from, and then returns quickly to the “off”
state. This is just a characteristic of the on-off intermittency
[compare Figs. 2(a) and 2(b)]. Now the ““off” state is not the
period-2 state in the small frame of Fig. 1; it is defined by
Eq. (4), i.e., the state in the large frame of Fig. 1 with a
suitable A [Fig. 2(a) represents the “off” state for the forced
site]. As o increases from o, bursts from the “off” state
[characterized by Eq. (4)] happen more and more frequently
[for i=(L/2)+1, see Fig. 2(c)], and more and more sites
away from the forced site exhibit on-off intermittency. The
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FIG. 3. The time solutions of sites i=41 (a) and 21 (b) at
o=0.055. The feature of on-off intermittency is clear.

time evolutions of on-off intermittency of sites i=41 and
i=21 at 0=0.055 are shown in Figs. 3(a) and 3(b), respec-
tively.

In order to characterize the statistical properties of differ-
ent sites, we calculate, numerically, the distribution P,, of the
laminar phase shown in Fig. 4 for some values of o and
different sites. A total of 1X 107 iterations of Eq. (3) were
computed to obtain each curve. The threshold for the laminar
phase was defined by |x(i)—£(i)| <7=1073, where £(i) is
given by Eq. (4). P, represents the probability of the laminar
phase of length n, namely, P,=M , /N, where N is the total
number of segments of the laminar phase, and M, the num-
ber of those of length n. The numerical results were inde-
pendent of the choice of the threshold 7 (not too large, of
course). The distribution has the following remarkable prop-
erty. At 0=0.055, when the forced site nearly obeys an ex-
ponential decay law, those of the other sites quickly shift to a
power law with exponent —2 as |i—51| increases [see Fig.
4(a)]. An interesting point is that the critical on-off intermit-
tency power law with exponent —3 can be observed for all
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FIG. 4. The relative distribution probability P, of a laminar
phase plotted against n (log-log plotting) for various sites at
o=0.055. The numbers in the figures indicate the site indices. (a)
i=51,50,48,46. (b) i=41. (c) i=31.
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sites with |i—(L/2)—1| larger than a certain value (at
o=0.055, one can find a purely critical —3 power law for all
sites from i=1 to i=41, and from i=61 to i=100). The
existence of this critical behavior is independent of the noise
intensity and the site position, if L and |i—51| are large
enough [see Figs. 4(b) and 4(c)).

In conclusion we would like to make the following re-
marks. The results in this paper make progress in the study of
on-off intermittency in several aspects.

(i) Here the on-off intermittency is found in a spatiotem-
poral system. Two main features in the conventional on-off
intermittency of low-dimensional systems, the two-state on-
off characteristic of motion and the —32 power law scaling,
are observed in our case. This fact much enlarges the appli-
cation area of the on-off intermittency. It is emphasized that
in Ref. [8], Keeler and Farmer explained in detail a space-
time intermittency based on the existence of kinks and do-
main formation, which is essentially different from the inter-
mittency discussed in this paper.

(ii) In our case the “off” state is no longer a simple con-
stant state, rather it is a complicated random high-
dimensional state limited by local bands [Figs. 1 and 2(a)];
an ‘“on” state indicates a burst from these well defined
bands. This situation seems to be more frequently encoun-
tered than that of the constant basic state.

(iii) The final as well as the most important point is that
the critical situation of the on-off intermittency can be orga-
nized by the system in the process of the propagation of
perturbation in space. At large o, the forced site exhibits an
exponential P, decay law. However, as the intermittency
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propagates away from the forced site in the space the expo-
nential law is gradually replaced by the power law. At suffi-
ciently large site distance |i—(L/2)— 1| we can see uniquely
a power law with exponent —3 that usually happens at cer-
tain critical parameter points (i.e., rather sensitive to the pa-
rameter choice) [1-5]. Here, we do not need any critical
parameter. As noise intensity is larger than a certain thresh-
old, the criticality can be self-organized during the perturba-
tion propagation, and this critical situation can be realized
rather robustly. The spatial variable is of crucial importance
for this robustness. This reminds us the phenomenon of self-
organized criticality extensively investigated in spatiotempo-
ral systems [13,14].

The spatiotemporal on-off intermittency is essentially a
global behavior of the extended system. Both nonlinearity
and spatial coupling are important for the phenomenon. An
analytic explanation for the phenomenon is still outstanding.
Nevertheless, the feature of robustness of criticality for the
sites far from the forced site can be heuristically understood.
This critical —3 power law scaling is an intrinsic behavior of
the coupled system, irrelevant to the external noise. Noise
plays a role only to stimulate the sites away from the “off”
period-2 state and to maintain excitations by continually
injecting ““energy.” The sites near the forced one are strongly
influenced by noise and exhibit a clear exponential tail of
laminar phase length distribution, while the dynamics of sites
far from the forced site is much less influenced by noise
and keep the intrinsic feature of the system, and exhibits pure
—2 power law decay. However, the point where this —3
power scaling comes from is still not clear yet.
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